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I. PARALLELISM 

Parallel Lines by Blondie.  Source: http://xponentialmusic.org/blogs/885mmmm/
2007/10/09/403-blondie-hits-1-with-heart-of-glass/ 

I. Parallelism 

• Concepts of parallelization 

•  Serial vs. parallel 

•  Parallelization strategies 
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Parallelization Concepts 

• When performing task, some subtasks depend on one 
another, while others do not 

•  Example: Preparing dinner 
- Salad prep independent of lasagna baking 
- Lasagna must be assembled before baking 

•  Likewise, in solving scientific problems, some tasks 
independent of one another 

Serial vs. Parallel 

•  Serial: tasks must be performed in sequence 

•  Parallel: tasks can be performed independently in any order 
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Serial vs. Parallel: Example 

•  Example: Preparing dinner 
- Serial tasks: making 

sauce, assembling 
lasagna, baking 
lasagna; washing 
lettuce, cutting 
vegetables, assembling 
salad 
- Parallel tasks: making 

lasagna, making salad, 
setting table 

Serial vs. Parallel: Example 

•  Could have several chefs, 
each performing one parallel 
task 

•  This is concept behind 
parallel computing 
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Parallel Algorithm Design: PCAM 

•  Partition: Decompose problem into fine-grained tasks 
to maximize potential parallelism 

• Communication: Determine communication pattern 
among tasks 

•  Agglomeration: Combine into coarser-grained tasks, if 
necessary, to reduce communication requirements or 
other costs 

• Mapping: Assign tasks to processors, subject to 
tradeoff between communication cost and 
concurrency 

(taken from Heath: Parallel Numerical Algorithms) 

Discussion: Jigsaw Puzzle* 

•  Suppose we want to do 5000 
piece jigsaw puzzle 

•  Time for one person to  
complete puzzle: n hours 

• How can we decrease wall time 
to completion? 

* Thanks to Henry Neeman 
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Discussion: Jigsaw Puzzle 

•  Add another person at the 
table 
- Effect on wall time 
- Communication 
- Resource contention 

•  Add p people at the table 
- Effect on wall time 
- Communication 
- Resource contention 

Discussion: Jigsaw Puzzle 

•  What about: p people,  p 
tables, 5000/p pieces each? 

•  What about: one person 
works on river, one works on 
sky, one works on mountain, 
etc.? 
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II. ARCHITECTURE 

Image: Louvre Abu Dhabi – Abu Dhabi, UAE, designed by Jean Nouvel, from http://www.inhabitat.com/
2008/03/31/jean-nouvel-named-2008-pritzker-architecture-laureate/ 

II. Supercomputer Architecture 

• What is a supercomputer? 

• Conceptual overview of architecture 

Cray 
(1976) 

IBM Blue 
Gene 
(2005) 

Architecture of IBM Blue 
Gene 
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What Is a Supercomputer? 

•  “The biggest, fastest computer right this minute.” -- 
Henry Neeman 

• Generally 100-10,000 times more powerful than PC 

•  This field of study known as supercomputing, high-
performance computing (HPC), or scientific 
computing 

•  Scientists use really big computers to solve really 
hard problems 

SMP Architecture 

• Massive memory, shared by multiple processors 

•  Any processor can work on any task, no matter its 
location in memory 

•  Ideal for parallelization of sums, loops, etc. 
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Cluster Architecture 

• CPUs on racks, do computations (fast) 

• Communicate through myrinet connections (slow) 

• Want to write programs that divide computations 
evenly but minimize communication 

State-of-the-Art Architectures 

•  Today, hybrid architectures gaining acceptance 

• Multiple {dual, quad}-core nodes, connected to other 
nodes by (slow) interconnect 

• Cores in node share memory (like small SMP 
machines) 

• Machine appears to follow cluster architecture (with 
multi-core nodes rather than single processors) 

•  To take advantage of all parallelism, use MPI (cluster) 
and OpenMP (SMP) hybrid programming 
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III. MAKEFILES AND 
BATCH SCRIPTS 
Fortune cookie-shaped USB drives available from http://vavolo.com/freshlybakedusb.asp 

Outline 

• Makefiles 

•  Batch Scripts 
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Makefiles 

• Motivation 

• Makefile concepts 

•  Tips 

• Resources 

Motivation 

•  Easy to compile program if only one file:  
 gcc -o program myprog.c 

•  (Could be) Easy to compile program if multiple files: 
gcc -c *.c; gcc -o program *.o 

•  But what if files in multiple directories?  What if using 
libraries?  What if special instructions for certain files? 

•  Also, what if we made one tiny change in one file, and 
we had 1000 files in program?  We would have to wait 
for hours for program to compile! 
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Makefile Concepts 

•  Makefile: File containing sets of rules for compilation of program(s) 

•  To use, create file called Makefile with these rules, then type 
make (plus target) 

•  Basic structure of a rule: 

 target … : dependencies …	


	
 	
 	
 command	


	
 	
 	
 …	


	
 	
 	
 … 

•  Make will manage compilation and recompile only objects that are 
older than respective source file 

Makefile Concepts 

•  General format of Makefile: 
- First, definitions of variables, e.g. 
 CC	
 	
 = gcc	

	
 LIB_LIST	
 = -lm -lmpich -lpthread	

	
 OBJS	
 	
 = myprog.o mysub1.o mysub2.o 
- Rules, e.g. 
	
 prog:	
 $(OBJS)	

	
 	
 	
 $(CLINKER) $(OPTFLAGS) -o prog \	

	
 	
 	
 	
 $(OBJS) $(LIB_DIR) $(LIBS) 

•  In rule, second line (and subsequent lines) starts with tab.  Must 
be tab, not spaces! 
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Sample Makefile (1) 

CC	
	
 	
 = gcc	


FC	
	
 	
 = g77	

CLINKER	
 = gcc	


OPTFLAGS 	
 = -O	

INCLUDE_DIR	
 = -I/opt/mpich/include	


LIB_DIR	
 = -L/opt/mpich/lib	


LIB_LIST	
 = -lmpich -lpthread	

CFLAGS	
	
 = $(OPTFLAGS)	


LIBS	
 	
 = $(LIB_LIST) -lm	

# this is a comment	


OBJS	
 	
 = myprog.o mysub1.o mysub2.o \	


	
 	
 	
   mysub3.o mysub4.o	

EXEC	
 	
 = prog	


Sample Makefile (2) 

prog:	
 $(OBJS)	


	
 	
 $(CLINKER) $(OPTFLAGS) -o $(EXEC) \ 	

	
 	
 	
 $(OBJS) $(LIB_DIR) $(LIBS)	


clean: 	


	
 	
 /bin/rm -f *.o *~ $(EXEC)	


.c.o:	


	
 	
 $(CC) $(INCLUDE_DIR) $(CFLAGS) -c $*.c	

.f.o:	


	
 	
 $(FC) -c $*.f	
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Tips 

•  Error messages from make cryptic; common source of 
error is using spaces instead of tabs 

•  man make gives good explanation of makefiles 

•  In above makefile, doing make clean removes all 
object files and gives “clean slate” 

• Make will issue message ‘Nothing to be done’ or 
‘Target up to date’ if no source files newer than object 
files 

Makefile Resources 

• GNU make http://theory.uwinnipeg.ca/gnu/make/
make_toc.html 

• Make -- a Tutorial http://www.eng.hawaii.edu/Tutor/
Make/ 

• Oram, Andrew, and Steve Talbott.  Managing Projects 
with make, O’Reilly & Associates, 1991. 
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Batch Scripts 

•  Batch System and Scheduling 

• Concepts 

• Useful commands 

•  Further help 

Batch System and Scheduling 

•  Supercomputer: powerful computer consisting of 
many interlinked CPUs 

• Users competing for computational resources 

• How to launch and schedule jobs fairly? 

•  Job can run without user presence 

• Must not allow one user to hog resources 
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Batch System 

•  Batch system accepts input jobs into queue and 
launches them when resources available 

• Many machines use batch system PBS (Portable 
Batch System) 

•  PBS developed for NASA in 1990s 

Scheduler 

(source: www.the-hawaii-vacation-guide.com) 

•  Scheduler decides when jobs can be run based on 
scheduling policies, e.g. user priority, length of job, 
number of nodes requested, length of time in queue 

• Many machines use Maui                                       
Scheduler 

• Maui Scheduler extensively                         
developed, supported by                                           
large segment of computation                            
community including                                               
U.S. Dept. of Energy, NCSA 
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Concepts 

•  Limits for walltime and number of processors, so if 
request exceeds limits, job automatically rejected 

•  Scheduler rules complicated, but generally, “smaller” 
jobs run first 

•  Size of job is function of number of processors and 
estimated time 

•  You provide info about number of processors you 
want and estimate of time job will run 

Concepts 

•  Strategies: 
- Like inverse of “The Price Is Right,” give lowest 

estimate possible, without going under true 
time needed (always good strategy) 
- Use fewer processors if possible (usually good 

strategy) 

•  If you reach end of estimated time, PBS will terminate 
your job! 

• Write script that tells PBS what to do when job is 
launched 
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Concepts 

•  Shell Script format: 
- First, a line invoking the scripting language:  

 #!/bin/csh 
- Next, embedded PBS commands, e.g.  

 #PBS -l walltime=00:10:00,nodes=2:ppn=2 
	
 #PBS -q workq     
 (the shell script interprets these as comments, but 
PBS understands they are PBS commands) 
- Then, environment variable initialization, e.g.  

 setenv MYMAINDIR /home/hqi/hello (sets 
variable MYMAINDIR to /home/hqi/hello)  
 setenv PROG $MYMAINDIR/prog (sets PROG to /
home/hqi/hello/prog) 

Concepts 

•  Shell script format (continued): 
- Then, shell script and regular Linux commands, e.g., 
if (-e $OUTF) mv $OUTF $OUTF.old   
 (meaning that if file called $OUTF exists, rename it 
to $OUTF.old) 
- Finally, run job:     

 mpirun -np $NP $PROG < $INFILE > $OUTF 
•  To launch job: 
- Make script executable*: chmod u+x myscript 
- qsub myscript	


*Not necessary on some systems 
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Useful Commands (PBS) 

•  #PBS -l walltime=hh:mm:ss,nodes=n:ppn=p 
This tells PBS how much walltime you request (where 
hh:mm:ss replaced by appropriate number of hours, 
minutes, and seconds), how many dual processor 
nodes you want (replace n with appropriate number), 
and how many processors per node (1 or 2) 

•  #PBS -q workq Which queue to use (in this case, 
queue called workq) 

•  #PBS -V Export all environment variables to batch 
job (good practice to do this) 

•  #PBS -m be Sends you e-mail at beginning and end 
of job 

Useful Commands (Shell Scripting) 

•  set echo Print out commands as they are executed 
(useful for debugging script) 

•  setenv A B Sets environment variable A to B 

•  $A value of A  

•  mpirun -np $NP $PROG < $INPUT > $OUTPUT 
mpirun (sometimes mpiexec, or on proprietary 
systems, aprun, poe, etc.) is executable that 
launches parallel jobs on multiple processors; -np is 
flag indicating number of processors used in run 
*NOTE: some implementations do not require 

input redirection (<) 
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Nice Job Script for Institutional Cluster 
(1) 

#PBS -S /bin/bash	

#PBS -V	

#PBS -j oe	

#PBS -m ae	

#PBS -M hartmanbakrj@ornl.gov	

#PBS -N loadbal	

#PBS -l walltime=00:10:00,nodes=2:ppn=2	

#PBS -q workq	

echo “Current working directory is `pwd`”	

echo “Node file: $PBS_NODEFILE : “	

echo “------”	

cat $PBS_NODEFILE	

echo “------”	

NUM_PROCS=`/bin/awk ‘END {printNR}’ $PBS_NODEFILE`	


Nice Job Script for Institutional Cluster 
(2) 

EXEC=${PBS_O_WORKDIR}/myprog	


INPUT_FILE=${PBS_O_WORKDIR}/prog_input.dat	


echo “------”	


cat $INPUT_FILE	


echo “------”	


echo “Running on $NUM_PROCS processors.”	


echo “------”	


echo “Starting run at: `date`”	


echo “------”	


mpiexec $EXEC $INPUT_FILE	


echo “------”	


echo “Ending run at: `date`” 
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Further Help 

• NCSA Cobalt Documentation: Running Jobs http://
www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/
SGIAltix/Doc/Jobs.html 

•  The C Shell tutorial http://www.eng.hawaii.edu/Tutor/
csh.html 

• DuBois, Paul. Using csh & tcsh, O’Reilly & 
Associates, 1995. 

• Newham, Cameron and Bill Rosenblatt.  Learning the 
bash Shell, O’Reilly & Associates, 1998. 

Bibliography/Resources 

•  About OpenPBS http://www.openpbs.org/about.html 

• Maui Scheduler http://www.supercluster.org/maui/ 
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IV. MPI 
MPI also stands for Max Planck Institute for Psycholinguistics.  Source: http://www.mpi.nl/WhatWeDo/istitute-
pictures/building 

IV. MPI 

•  Introduction to MPI 

•  Parallel programming concepts 

•  The Six Necessary MPI Commands 

•  Example program 
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Introduction to MPI 

•  Stands for Message Passing Interface 

•  Industry standard for parallel programming (200+ page 
document) 

•  MPI implemented by many vendors; open source 
implementations available too 
- ChaMPIon-PRO, IBM, HP, Cray vendor implementations 
- MPICH, LAM-MPI, OpenMPI (open source) 

•  MPI function library is used in writing C, C++, or Fortran 
programs in HPC 

•  MPI-1 vs. MPI-2: MPI-2 has additional advanced functionality 
and C++ bindings, but everything learned today applies to both 
standards 

Parallelization Concepts 

•  Two primary programming paradigms: 
- SPMD (single program, multiple data) 
- MPMD (multiple programs, multiple data) 

• MPI can be used for either paradigm 
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SPMD vs. MPMD 

•  SPMD: Write single program that will perform same 
operation on multiple sets of data 
- Multiple chefs baking many lasagnas 
- Rendering different frames of movie 

• MPMD: Write different programs to perform different 
operations on multiple sets of data 
- Multiple chefs preparing four-course dinner 
- Rendering different parts of movie frame 

• Can also write hybrid program in which some 
processes perform same task 

The Six Necessary MPI Commands 

•  int MPI_Init(int *argc, char **argv)	


•  int MPI_Finalize(void)	


•  int MPI_Comm_size(MPI_Comm comm, int *size)	


•  int MPI_Comm_rank(MPI_Comm comm, int *rank)	


•  int MPI_Send(void *buf, int count, MPI_Datatype 
datatype, int dest, int tag, MPI_Comm comm)	


•  int MPI_Recv(void *buf, int count, MPI_Datatype 
datatype, int source, int tag, MPI_Comm comm, 
MPI_Status *status)	
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Initiation and Termination 

•  MPI_Init(int *argc, char **argv) initiates 
MPI 
- Place in body of code after variable 

declarations and before any MPI commands 

•  MPI_Finalize(void) shuts down MPI 
- Place near end of code, after last MPI command 

Environmental Inquiry 

•  MPI_Comm_size(MPI_Comm comm, int *size)  
- Find out number of processes 
- Allows flexibility in number of processes used 

in program 

•  MPI_Comm_rank(MPI_Comm comm, int *rank)  
- Find out identifier of current process 
- 0 ≤ rank ≤ size-1 
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Message Passing: Send 

•  MPI_Send(void *buf, int count, 
MPI_Datatype datatype, int dest, int 
tag, MPI_Comm comm) 
- Send message of length count bytes and 

datatype datatype contained in buf with tag 
tag to process number dest in communicator 
comm 
- E.g. MPI_Send(&x, 1, MPI_DOUBLE, 
manager, me, MPI_COMM_WORLD)	


Message Passing: Receive 

•  MPI_Recv(void *buf, int count, 
MPI_Datatype datatype, int source, int 
tag, MPI_Comm comm, MPI_Status *status)	

- Receive message of length count bytes and 

datatype datatype with tag tag in buffer buf 
from process number source in communicator 
comm and record status status 
- E.g. MPI_Recv(&x, 1, MPI_DOUBLE, 
source, source, MPI_COMM_WORLD, 
&status)	
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Message Passing 

• WARNING! Both standard send and receive functions 
are blocking 

•  MPI_Recv returns only after receive buffer contains 
requested message 

•  MPI_Send may or may not block until message 
received (usually blocks) 

• Must watch out for deadlock 

Deadlocking Example (Always) 

#include <mpi.h>	


#include <stdio.h>	


int main(int argc, char **argv) {	


    int me, np, q, sendto;	


    MPI_Status status;	


    MPI_Init(&argc, &argv);	


    MPI_Comm_size(MPI_COMM_WORLD, &np);	


    MPI_Comm_rank(MPI_COMM_WORLD, &me);	


    if (np%2==1) return 0;	


    if (me%2==1) {sendto = me-1;}	


    else {sendto = me+1;}	


    MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	


    MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	


    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, 	


	
 	
 sendto, q, sendto);	


    MPI_Finalize();	


    return 0;	


}	
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Deadlocking Example (Sometimes) 

#include <mpi.h>	


#include <stdio.h>	


int main(int argc, char **argv) {	


    int me, np, q, sendto;	


    MPI_Status status;	


    MPI_Init(&argc, &argv);	


    MPI_Comm_size(MPI_COMM_WORLD, &np);	


    MPI_Comm_rank(MPI_COMM_WORLD, &me);	


    if (np%2==1) return 0;	


    if (me%2==1) {sendto = me-1;}	


    else {sendto = me+1;}	


    MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	


    MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	


    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, 	


	
 	
 sendto, q, sendto);	


    MPI_Finalize();	


    return 0;	


}	


Deadlocking Example (Safe) 

#include <mpi.h>	


#include <stdio.h>	


int main(int argc, char **argv) {	


    int me, np, q, sendto;	


    MPI_Status status;	


    MPI_Init(&argc, &argv);	


    MPI_Comm_size(MPI_COMM_WORLD, &np);	


    MPI_Comm_rank(MPI_COMM_WORLD, &me);	


    if (np%2==1) return 0;	


    if (me%2==1) {sendto = me-1;}	


    else {sendto = me+1;}	


    if (me%2 == 0) {	


        MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	


        MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	


	
 } else {	


        MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	


        MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	


    }	


    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q, sendto);	


    MPI_Finalize();	


    return 0;	


}	
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Explanation: Always Deadlock Example 

•  Logically incorrect 

• Deadlock caused by blocking MPI_Recvs 

•  All processes wait for corresponding MPI_Sends to 
begin, which never happens 

Explanation: Sometimes Deadlock 
Example 

•  Logically correct 

• Deadlock could be caused by MPI_Sends competing 
for buffer space 

• Unsafe because depends on system resources 

•  Solutions: 
- Reorder sends and receives, like safe example, 

having evens send first and odds send second 
- Use non-blocking sends and receives or other 

advanced functions from MPI library (beyond 
scope of this tutorial) 
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Bibliography/Resources: MPI 

•  Snir, Marc, Steve W. Otto, Steven Huss-Lederman, David W. 
Walker, and Jack Dongarra. (1996) MPI:The Complete 
Reference. Cambridge, MA: MIT Press. (also available at http://
www.netlib.org/utk/papers/mpi-book/mpi-book.html) 

•  MPICH Documentation http://www-unix.mcs.anl.gov/mpi/mpich/ 

•  C, C++, and FORTRAN bindings for MPI-1.2 http://www.lam-
mpi.org/tutorials/bindings/ 

V. OPENMP 
Source: http://xkcd.com/225/ 



31 

V. OpenMP 

•  About OpenMP 
•  OpenMP Directives 
- Parallel 
- Loop 
- Sections 
- Synchronization 

•  Data Scope 

•  Runtime Library Routines 

•  OpenMP Environment Variables 

•  Running Applications with OpenMP 

About OpenMP 

•  Industry-standard shared memory programming 
model 

• Developed in 1997 

• OpenMP Architecture Review Board (ARB) 
determines additions and updates to standard 
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Advantages to OpenMP 

•  Parallelize small parts of application, one at a time 
(beginning with most time-critical parts) 

• Can express simple or complex algorithms 

• Code size grows only modestly 

•  Expression of parallelism flows clearly, so code is 
easy to read 

•  Single source code for OpenMP and non-OpenMP – 
non-OpenMP compilers simply ignore OMP directives 

OpenMP Programming Model 

•  Application Programmer Interface (API) is 
combination of 
- Directives 
- Runtime library routines 
- Environment variables 

•  API falls into three categories 
- Expression of parallelism (flow control) 
- Data sharing among threads (communication) 
- Synchronization (coordination or interaction) 
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Parallelism 

•  Shared memory, thread-based parallelism 

•  Explicit parallelism (parallel regions) 

•  Fork/join model 

Source: https://computing.llnl.gov/tutorials/openMP/ 

OpenMP Directives: Parallel 

•  A block of code executed by multiple threads 

•  Syntax: 
#pragma omp parallel private(list)\ 
shared (list) 

{ 
   /* parallel section */ 
} 
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Simple Example 

#include <stdio.h> 

#include <omp.h> 

int main (int argc, char *argv[]) { 

 int tid; 

 printf(“Hello world from threads:\n”); 

 #pragma omp parallel private(tid) 

 { 

  tid = omp_get_thread_num(); 

  printf(“<%d>\n”, tid); 

 } 

 printf(“I am sequential now\n”); 

 return 0; 

} 

Output (Simple Example) 

Output 1 
Hello world from 
threads:  

<0>  
<1>  
<2> 
<3>  
<4>  
I am sequential now 

Output 2 
Hello world from 
threads:  

<1>  
<2> 
<0>  
<4>  
<3>  
I am sequential now 

Order of execution is scheduled by OS!!!!!! 
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OpenMP Directives: Loop 

•  Iterations of the loop following the directive are executed in 
parallel 

•  Syntax: 
#pragma omp for schedule(type [,chunk]) \ 
private(list) shared(list) nowait 

{ 

  /* for loop */ 

} 
- type = {static, dynamic, guided, runtime} 
- If nowait specified, threads do not synchronize at 

end of loop 

OpenMP Directives: Loop Scheduling 

•  Default scheduling determined by implementation 
•  Static 
- ID of thread performing particular iteration is 

function of iteration number and number of threads 
- Statically assigned at beginning of loop 
- Load imbalance may be issue if iterations have 

different amounts of work 
•  Dynamic 
- Assignment of threads determined at runtime 

(round robin) 
- Each thread gets more work after completing 

current work 
- Load balance is possible 
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Loop: Simple Example 

#include <omp.h> 
#define CHUNKSIZE 100 
#define N     1000 
int main ()  { 

  int i, chunk; 
  float a[N], b[N], c[N]; 
  /* Some initializations */ 

  for (i=0; i < N; i++) 
    a[i] = b[i] = i * 1.0; 
  chunk = CHUNKSIZE; 

  #pragma omp parallel shared(a,b,c,chunk) private(i)   
  {   
    #pragma omp for schedule(dynamic,chunk) nowait   

    for (i=0; i < N; i++)     
      c[i] = a[i] + b[i];   
  }  /* end of parallel section */ 

  return 0; 
} 

OpenMP Directives: Sections 

•  Non-iterative work-sharing construct 
•  Divide enclosed sections of code among threads 

•  Section directives nested within sections directive 

•  Syntax 
#pragma omp sections 
{ 
  #pragma omp section 
  /* first section */ 
  #pragma omp section 
  /* next section */ 
} 
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Sections: Simple Example 

#include <omp.h> 
#define N     1000 

int main () { 

  int i; 

  float a[N], b[N], c[N], 
d[N]; 

  /* Some initializations 
*/ 

  for (i=0; i < N; i++) {   

    a[i] = i * 1.5;   

    b[i] = i + 22.35; 

  } 

 #pragma omp parallel shared(a,b,c,d) \ 
private(i)   

  {   

    #pragma omp sections nowait     

    {     

      #pragma omp section 

        for (i=0; i < N; i++)       

          c[i] = a[i] + b[i];     

      #pragma omp section     

        for (i=0; i < N; i++) 

       d[i] = a[i] * b[i];    

     }  /* end of sections */  

   }  /* end of parallel section */ 

return 0; 

} 

OpenMP Directives: Synchronization 

•  Sometimes, need to make sure threads execute regions of 
code in proper order 
- Maybe one part depends on another part being 

completed 
- Maybe only one thread need execute a section of 

code 
•  Critical 
- Specifies section of code that must be executed by 

only one thread at a time 
- Syntax 

#pragma omp critical [name] 
- Names are global identifiers – critical regions with 

same name are treated as same region 
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OpenMP Directives: Synchronization 

•  Barrier 
- Synchronizes all threads: thread reaches barrier and 

waits until all other threads have reached barrier, then 
resumes executing code following barrier 
- Syntax 

#pragma omp barrier 
- Sequence of work-sharing and barrier regions 

encountered must be the same for every thread 
•  Single 
- Enclosed code is to be executed by only one thread 
- Useful for thread-unsafe sections of code (e.g., I/O) 
- Syntax 

#pragma omp single 

Variable Scope 

•  By default, all variables shared except 
- Certain loop index values – private by default 
- Local variables and value parameters within 

subroutines called within parallel region – 
private 
- Variables declared within lexical extent of 

parallel region – private 
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Default Scope Example 
void caller(int *a, int n) { 

int i,j,m=3; 

#pragma omp parallel for 

for (i=0; i<n; i++) { 

  int k=m; 

  for (j=1; j<=5; j++) { 

    callee(&a[i], &k, j); 

  } 

} 

Void callee(int *x, int *y, int 
z) { 

  int ii; 

  static int cnt; 

  cnt++; 

  for (ii=1; ii<z; ii++) { 

    *x = *y + z; 

  } 

} 

Var Scope Comment 
a shared Declared outside parallel construct 

n shared same 

i private Parallel loop index 

j shared Sequential loop index 

m shared Declared outside parallel construct 

k private Automatic variable/parallel region 

x private Passed by value 

*x shared (actually a) 

y private Passed by value 

*y private (actually k) 

z private (actually j) 

ii private Local stack variable in called 
function 

cnt shared Declared static (like global) 

OpenMP Runtime Library Routines 

•  void omp_set_num_threads(int num_threads) 
- Sets number of threads used in next parallel region 
- Must be called from serial portion of code 

•  int omp_get_num_threads() 
- Returns number of threads currently in team 

executing parallel region from which it is called 

•  int omp_get_thread_num() 
- Returns rank of thread  
- 0 ≤ omp_get_thread_num() < 
omp_get_num_threads() 
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OpenMP Environment Variables 

•  Set environment variables to control execution of 
parallel code 

• OMP_SCHEDULE 
- Determines how iterations of loops are 

scheduled 
- E.g., setenv OMP_SCHEDULE ”guided, 4” 

• OMP_NUM_THREADS 
- Sets maximum number of threads 
- E.g., setenv OMP_NUM_THREADS 4 

Running Programs with OpenMP 
Directives 

• May need special compiler options (e.g., for PGI 
compilers, use -mp=nonuma flag) 

• May need to set environment variables in batch 
scripts (e.g., on Jaguar, include definition of 
OMP_NUM_THREADS in script) 

•  Example: to run on 64 dual-core nodes on Jaguar, 
add the following to your script: 
export OMP_NUM_THREADS=2 
aprun –n 128 –N 1 myprog   
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VI. DEBUGGING AND 
PERFORMANCE 
EVALUATION 

Source: http://www.uky.edu/Ag/Entomology/ythfacts/4h/unit1/i&tr.htm 
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VI. Debugging and Performance 
Evaluation  

• Common errors in parallel programs 

• Debugging tools 

• Overview of benchmarking and performance 
measurements 

Common Errors 

•  Program hangs 
- Send has no corresponding receive (or vice versa) 
- Send/receive pair do not match in source/recipient or tag 
- Condition you believe should occur does not occur 

•  Segmentation fault 
- Trying to access memory you are not allowed to access/ 

memory you should not have been allowed to access has 
been altered (e.g. array index out-of-bounds, uninitialized 
pointers, using non-pointer as pointer) 
- Trying to access a memory location in a way that is not 

allowed (e.g. overwrite a read-only location) 
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Debugging Tools 

• Debugging parallel codes is particularly difficult 

•  Problem: figuring out what happens on each node 

•  Solutions: 
- Print statements, I/O redirection into files 

belonging to each node 
- Debuggers compatible with MPI 

Print Statement Debugging Method 

•  Each processor dumps print statements to stdout or 
into individual output files, e.g. log.0001, log.
0002, etc. 

•  Advantage: easy to implement, independent of 
platform or available resources 

• Disadvantage: time-consuming, extraneous 
information in log files 
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MPI-Compatible Debuggers 

•  TotalView 
- Commercial product, easy-to-use GUI 
- Installed on production systems such as Crays, probably 

not installed on local machines 

•  Free debuggers + mpirun 
- Use mpirun command and specify your favorite 

debugger, e.g. mpirun -dbg=ddd -np 4 ./myprog 
- This option available with MPICH and most other MPI 

implementations 
- Not as “pretty” as TotalView but it gets job done 

Benchmarking and Performance 

•  Efficiency 

•  Scalability 

•  Performance modeling 

•  Example 
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Efficiency 

• How well does parallel program perform compared to 
serial program (or parallel program on 1 processor)? 

•  E = efficiency, N = # processors, Tp = time for p 
processors 

€ 

EN =
T1
NTN

Efficiency 

•  Ideally, EN = 1; realistically, EN < 1. 

•  Factors influencing efficiency 
- Load balance (evenly distribute work for better 

efficiency) 
- Concurrency (minimize idle time on all 

processors) 
- Overhead (minimize work that serial 

computation would not do, e.g. communication) 
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Scalability: Speedup 

• How well does parallel program take advantage of 
additional processors? 

•  S = speedup, N = # processors, Tp = time for p 
processors 

€ 

SN =
T1
TN

Determining Scalability of Program 

• How to measure scalability 
- Fixed problem size, measure TN for different N’s 
- Increase problem size proportional to N, 

compare TN 

• Repeat performance runs at least 3 times for each N 
(ideally >5 times) 

•  Plot on log-log graph; slope of line determines 
scalability 
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Scalability 
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Performance Evaluation 

• Create performance model 

•  Examine parallel algorithm and figure out which parts 
fit in each category 

•  Perform least-squares fit with scalability data € 

TN = TN
communication + TN

computation + TN
serial
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Benchmarking and Performance: 
Example 

•  Example of real program: three-tier parallel program 
from my dissertation 

•  The problem: Compute diffusion function 
- Compute f matrices, each matrix and each 

matrix entry independent of all others 
- Perform matrix-vector multiply for each matrix 

and take norm of result 
- Take weighted average of f results 

Example: Schematic Overview of 
Algorithm 
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Example: Categorize Algorithm 

Communication Computation Serial (Idle) 
Manager: send information 
about computation to All 

Manager: Initialize 

All: Compute matrix 
entries using quadrature 

Workers: Send matrix 
entries to Drivers 

Drivers: Compute matrix/
vector multiply and norm 

(Worker processes are idle) 

Drivers: Send results to 
manager 

Compute final function 
evaluation (All processes 
except Manager are idle) 

Tim
e 

Example: Performance Evaluation 

•  N = # processors 

•  d = # drivers 

•  f = stencil size 

•  P(N, f) = max # entries 
computed by 1 proc  

•  ts = message startup time 

•  tquad = avg time to compute one 
entry 

•  tinit = time spent by manager in 
serial 

For three-tier algorithm, 
€ 

TN = TN
communication + TN

computation + TN
serial

€ 

TN = (3N + d −1)ts + P(N, f )tquad + tinit
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Example: Performance Evaluation 

•  Using least squares solve, we obtain 

€ 

TN = (3N + d −1) 3.81077 ×10−3 + P(N, f ) 10.3311+ 3.91500 sec

Bibliography/Resources: Programming 
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VII. PROGRAMMING 
PROJECT 
Source: http://www.ehow.com/how_2141082_best-berry-pie-ever.html 
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VII. Programming Project 

•  Project Description 

•  Programming Concepts 

•  Parallelization Strategies 

Project Description 

• We want to compute π 

• One method: method of darts* 

• Ratio of area of square to area of inscribed circle 
proportional to π 
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Method of Darts 

•  Imagine dartboard with circle of radius R inscribed in square 

•  Area of circle 

•  Area of square 
•  Area of circle   
 Area of square 

€ 

= π R2

€ 

= 2R( )2 = 4R2

€ 

=
π R2

4R2
=
π
4

Method of Darts 

•  So, ratio of areas proportional to π 

•  How to find areas? 
- Suppose we threw darts (completely  

 randomly) at dartboard 
- Could count number of darts landing in circle and total 

number of darts landing in square 
- Ratio of these numbers gives approximation to ratio of 

areas 
- Quality of approximation increases with number of darts 

•  π = 4 × # darts inside circle 
                    # darts thrown 
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Method of Darts 

• Okay, Rebecca, but how in the world do we simulate 
this experiment on computer? 
- Decide on length R 
- Generate pairs of random numbers (x, y) s.t. 

  -R ≤ x, y ≤ R 
- If (x, y) within circle (i.e. if (x2+y2) ≤ R2), add one 

to tally for inside circle 
- Lastly, find ratio 

Programming Concepts 

• Random numbers: in C language, function int rand
(void) generates “pseudo-random integer in range 
0 to RAND_MAX” 

•  RAND_MAX: C-language constant denoting maximum 
random number generated; actual value varies with 
implementation 

• Divide “random” number by maximum random 
number to get a number between 0 and 1*	
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Programming Concepts 

•  Type cast and coercion: 
- int a = rand(); double b = a/RAND_MAX; 

•  b equals 0 
- int a = rand(); double b = ((double) a)/
((double) RAND_MAX); 
•  b equals correct value 

- Type conversion rules: 
•  int/int → int	

•  int/double → double	

•  double/int → double	

•  double/double → double 

Programming Concepts 

•  Numbers generated by rand() not really random; same 
sequence every time 

•  Change seed for random number generator with void srand
(unsigned int seed) 

•  Datatypes: 
- For a lot of darts, need larger datatype than int or risk 

overflow 
- On some computers (varies by platform): 

Data Type Range 

int -32,768 — +32,767 

long int -2,147,483,648 — 
+2,147,483,648 

unsigned long int 0 — +4,294,967,295 
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Parallelization Strategies 

• What tasks independent of each other? 

• What tasks must be performed sequentially? 

• Using PCAM parallel algorithm design strategy 

Partition 

•  “Decompose problem into fine-grained tasks to 
maximize potential parallelism” 

•  Finest grained task: throw of one dart 

•  Each throw independent of all others 

•  If we had huge computer, could assign one throw 
to each processor 
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Communication 

“Determine communication pattern among tasks” 

•  Each processor throws dart(s) then sends results back to 
manager process 

Agglomeration 

“Combine into coarser-grained tasks, if necessary, to 
reduce communication requirements or other costs” 

•  To get good value of π, must use millions of darts 

• We don’t have millions of processors available 

•  Furthermore, communication between manager and 
millions of worker processors would be very 
expensive 

•  Solution: divide up number of dart throws evenly 
between processors, so each processor does a share 
of work 
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Mapping 

“Assign tasks to processors, subject to tradeoff between 
communication cost and concurrency” 

•  Assign role of “manager” to processor 0 

•  Processor 0 will receive tallies from all the other 
processors, and will compute final value of π 

•  Every processor, including manager, will perform 
equal share of dart throws 
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Appendix: Better Ways to Compute π 

•  Look it up on the internet, e.g. http://
oldweb.cecm.sfu.ca/projects/ISC/data/ pi.html 

• Compute using the BBP (Bailey-Borwein-Plouffe) 
formula 

•  For less accurate computations, try your programming 
language’s constant, or quadrature or power series 
expansions 
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Appendix: Better Ways to Generate 
Pseudorandom Numbers 

•  For serial codes 
- Mersenne twister 
- GSL (Gnu Scientific Library), many generators available 

(including Mersenne twister) http://www.gnu.org/
software/gsl/ 

•  For parallel codes 
- SPRNG, regarded as leading parallel pseudorandom 

number generator http://sprng.cs.fsu.edu/ 
- PPRNG, Bill Cochran’s new parallel pseudorandom 

number generator, supposedly superior to SPRNG http://
runge.cse.uiuc.edu/~wkcochra/pprng/ 


